# Transcranial Magnetic Stimulation in the Treatment of Stimulant Use Disorders

Kathleen Brady, MD, PhD

ASAM Annual Conference, Dallas, Texas, April 6, 2024



### Disclosure Information (Required)

#### **TMS in Stimulant Use Disorders**

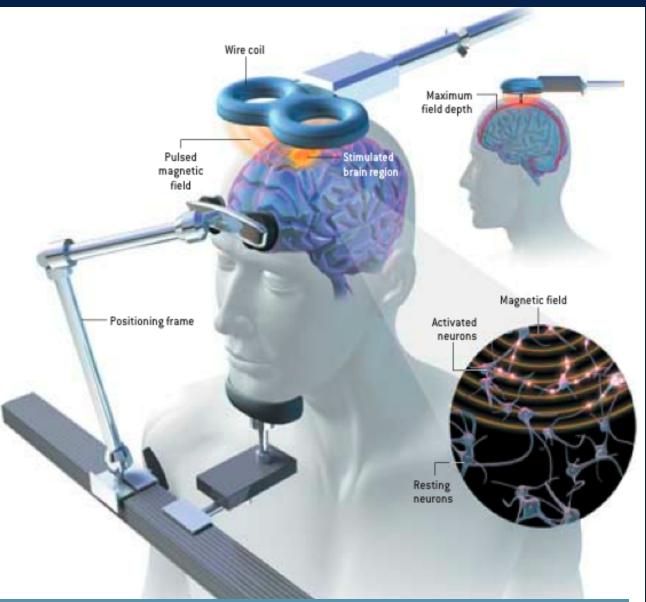
April 6, 2024

Kathleen Brady, MD, PhD

No Disclosures






### Learning Objectives (Suggested)

- To learn about basic principles underlying transcranial magnetic stimulation (TMS)
- \*To learn about data to date supporting the use of TMS in the treatment of stimulant use disorders
- To discuss "next steps" in exploration of the use of TMS in the treatment of stimulant use disorders



### What Is TMS?





# TRANSCRANIAL MAGNETIC STIMULATION

Non-invasive form of brain stimulation - changing magnetic field is used to cause electric current in specific brain regions through electromagnetic induction

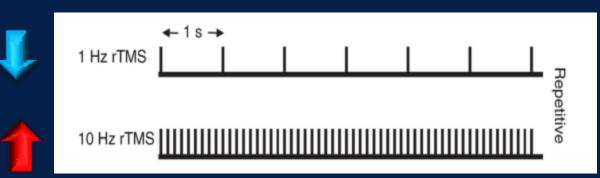
George MS. Sci Am. 2003;289:66-73.

# Behavioral and Brain effects are frequency dependent

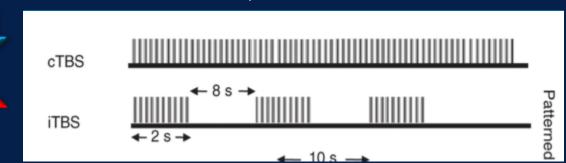
### Frequency dependent modulation of cortical targets

High Frequency (10Hz) higher cortical excitability Amplified neural response

Intermittent
Theta Burst

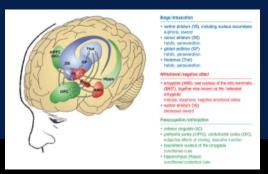

Low Frequency (1Hz)

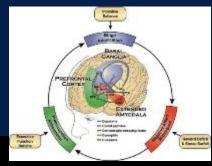
Continuous
Theta Burst

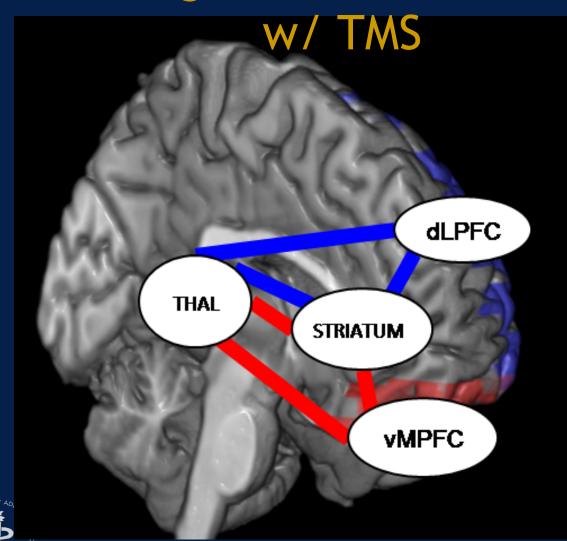

lower cortical excitability

Attenuated neural response

Standard, fixed rate TMS





Accelerated, theta burst TMS






# Theoretical Constructs for Treating Cue-induced craving







### Approach

#### Executive Control Loop

### LTP-like stimulation

### 1-5Hz

10-20 Hz

**iTBS** 



Limbic Arousal Loop **Example** 

## Stimulation in Addiction

(Sailing and Martinez, Neuropharm; 2016)

"an acute effect on craving for drugs and alcohol... few studies investigating relapse or use"

Various regions stimulated

Mechanism not well understood

Great potential – further investigation needed

Table 1 Transcranial Magnetic Stimulation (TMS)

| Drug      | Treatments         | n      | Target                     | Stimulation                                       | Outcome measures                                                  | Effect                      | Citation                        |
|-----------|--------------------|--------|----------------------------|---------------------------------------------------|-------------------------------------------------------------------|-----------------------------|---------------------------------|
| Nicotine  | 1                  | 11     | L DLPFC                    | 10,20 Hz, 90,100% MT                              | Craving                                                           | $\downarrow$                | Johann et al, 2003              |
|           | 1                  | 16     | L DLPFC                    | 10 Hz, 100% MT                                    | Cue-induced craving                                               | $\downarrow$                | Li <i>et al</i> , 2013a, b      |
|           | 2                  | 14     | L DLPFC                    | 20 Hz, 90% MT                                     | Craving<br>Ad libitum smoking                                     | No effect<br>↓              | Eichhammer <i>et a</i> l, 2003  |
|           | 1                  | 14     | L DLPFC                    | 10 Hz, 90% MT                                     | Cue-induced craving<br>EEG delta                                  | <b>\( \dagger</b> \)        | Pripfl <i>et al</i> , 2014      |
|           | 1                  | 10     | L DLPFC                    | 1 Hz, 110% MT                                     | Cue-induced craving fMRI: ACC, OFC, VS                            | $\downarrow$                | Hayashi <i>et al</i> , 2013     |
|           | 1                  | 15     | SFG<br>SFG<br>MOC          | 1 Hz, 90% MT<br>10 Hz, 90% MT<br>1, 10 Hz, 90% MT | Cue-induced craving<br>Cue-induced craving<br>Cue-induced craving | No effect<br>↓<br>No effect | Rose <i>et al</i> , 2011        |
|           | 10                 | 48     | L DLPFC                    | 10 Hz, 100% MT                                    | Cue-induced craving<br>Cigarette consumption                      | $\downarrow$                | Amiaz <i>et al</i> , 2009       |
|           | 20, w therapy      | 15     | L,R DLPFC                  | 20 Hz, 90% MT                                     | Craving<br>Smoking                                                | ↓<br>No effect              | Wing et al, 2012                |
|           | 15                 | 35     | L DLPFC                    | 10 Hz, 110% MT                                    | Smoking                                                           | $\downarrow$                | Prikryl et al, 2014             |
|           | 13, h-coil, w/cues | 115    | PFC, insula<br>PFC, insula | 1 Hz, 120% MT<br>10 Hz, 120% MT                   | Cigarette consumption<br>Cigarette consumption                    | No effect<br>↓              | Dinur-Klein <i>et al</i> , 2014 |
| Alcohol   | 10                 | 45     | R DLPFC                    | 10, Hz, 110% MT                                   | Craving                                                           | $\downarrow$                | Mishra et al, 2010              |
|           | 10                 | 20     | R and L DLPFC              | 10, Hz, 110% MT                                   | Craving                                                           | $\downarrow$                | Mishra et al, 2015              |
|           | 1                  | 31     | R DLPFC                    | 20 Hz, 110% MT                                    | Craving (lab)<br>Craving (home)                                   | No effect<br>No effect      | Herremans <i>et al</i> , 2012   |
|           | 1                  | 29     | R DLPFC                    | 20 Hz, 110% MT                                    | Craving<br>Response inhibition                                    | No effect<br>↑              | Herremans <i>et al</i> , 2013   |
|           | 1                  | 19     | L DLPFC                    | 20 Hz, 90% MT                                     | Craving<br>Depressive symptoms<br>Alcohol cue attention           | No effect<br>No effect<br>↓ | Hoppner <i>et al</i> , 2011     |
|           | 20, h-coil         | 11     | MPFC<br>LPFC               | 20 Hz, 120% MT                                    | Craving                                                           | $\downarrow$                | Rapinesi <i>et al</i> , 2015    |
|           | 10                 | 18     | MPFC                       | 20 Hz, 120% MT                                    | Craving<br>Depressive symptoms                                    | <b>\( \dagger</b>           | Ceccanti <i>et al</i> , 2015    |
| Cocaine   | 1                  | 6<br>6 | R DLPFC<br>L DLPFC         | 10 Hz, 90% MT<br>10 Hz, 90% MT                    | Craving<br>Craving                                                | ↓<br>No effect              | Camprodon <i>et al</i> ,2007    |
|           | 10                 | 36     | L DLPFC                    | 15 Hz, 100% MT                                    | Craving                                                           | $\downarrow$                | Politi et al, 2008              |
|           | 1                  | 11     | MPFC                       | cTBS, 110% MT                                     | Craving                                                           | $\downarrow$                | Hanlon <i>et al</i> , 2015a, b  |
| Methamph. | 1                  | 10     | L DLPFC                    | 1 Hz, 100% MT                                     | Craving                                                           | $\uparrow$                  | Li <i>et al</i> , 2013a, b      |

### Modulating Neural Circuits with Transcranial Magnetic Stimulation: Stimulant Use Disorder (Hanlon et al., Pharmacol Review, 2018)

| Author                                       | Drug of Abuse      | Sample Size | Site of TMS                | Frequency     | Sessions | Behavioral Effect?                              | Active Sham Control  |
|----------------------------------------------|--------------------|-------------|----------------------------|---------------|----------|-------------------------------------------------|----------------------|
| Camprodon et al. (2007)                      | Cocaine            | 6           | L/R DLPFC                  | 10 Hz         | 1        | Yes                                             | Within subject       |
| Hanlon et al. (2015b)                        | Cocaine            | 11          | LvMPFC                     | cTBS          | $6^a$    | Yes                                             | Within subject       |
| Hanlon et al. (2017)<br>Politi et al. (2008) | Cocaine<br>Cocaine | 25<br>36    | LMPFC<br>LDLPFC            | cTBS<br>15 Hz | 6º<br>10 | $\mathop{\mathrm{Yes}}_{\mathop{\mathrm{Yes}}}$ | Within subject<br>No |
| Rapinesi et al. (2016)                       | Cocaine            | 7           | L DLPFC <sup>b</sup>       | 20 Hz         | 12       | $Y_{es}$                                        | Between groups       |
| Bolloni et al. (2016)                        | Cocaine            | 10          | Bilat PFC/Ins <sup>b</sup> | 10 Hz         | 12       | No                                              | Between groups       |
| Terraneo et al. (2016)                       | Cocaine            | 32          | L DLPFC                    | 15 Hz         | . 8      | Yes                                             | No                   |
| Li et al. (2013b)                            | Meth.              | 10          | L DLPFC                    | 1 Hz          | 1 day    | No                                              | Within subject       |

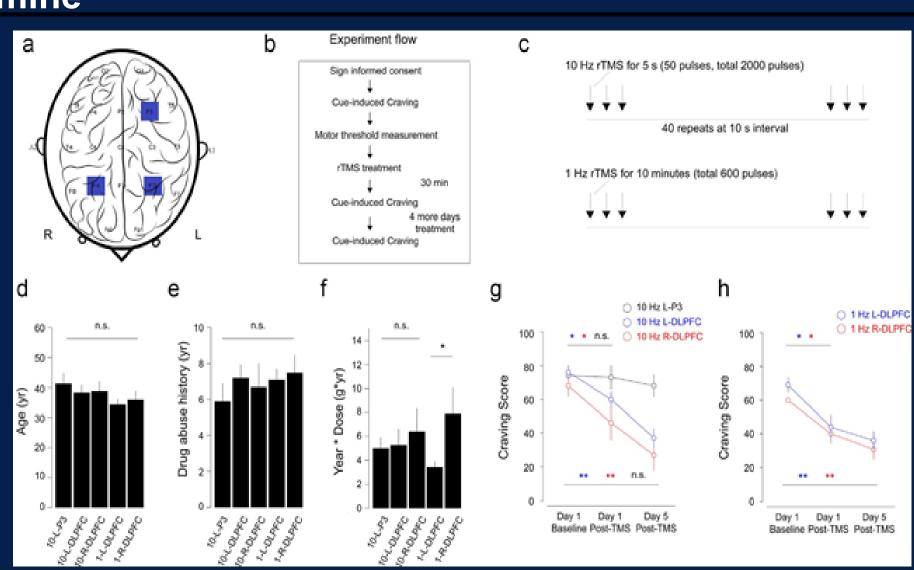
PFC, prefrontal cortex.



<sup>&</sup>lt;sup>e</sup>Multiple sessions were given in a single day.

bStudies used H-coil TMS devices (Brainsway, Jerusalem, Israel). This deep TMS coil geometry has a very different field distribution than the typical figure of eight coils.

Either Left or Right, Both High and Low Frequency rTMS of Dorsolateral Prefrontal Cortex Decreases Cue Induced Craving for Methamphetamine


(Lui et al., 2017)

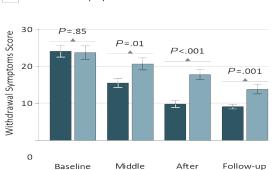
50 males with MUD

Daily treatment for 5 days

Craving measured immediately before and 30 min after treatment

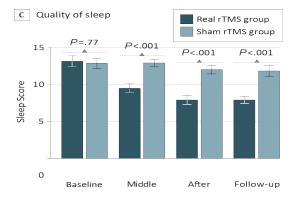


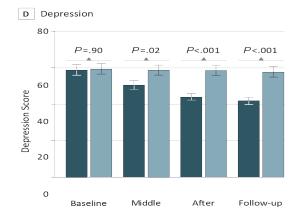


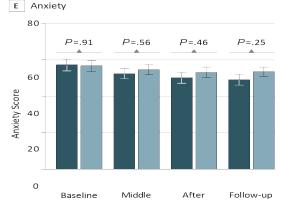

#### Figure 2. Repetitive Transcranial Magnetic Stimulation (rTMS) Intervention Effects on Withdrawal Symptoms, Craving, Quality of Sleep, Targeting Withdrawal Withdrawal symptoms Withdrawal symptoms **Symptoms in MUD:** Randomized Trial Liang et al., 2018

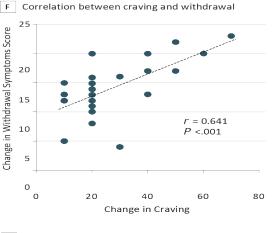
50 men with MUD

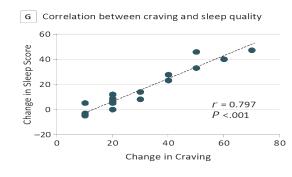
Sham-controlled

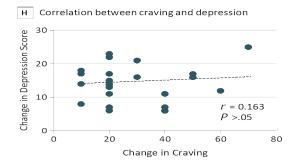

10 Hz trt L DLPFC

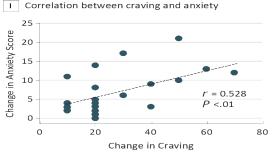

10 treatments over 12 days





B Cue-induced craving















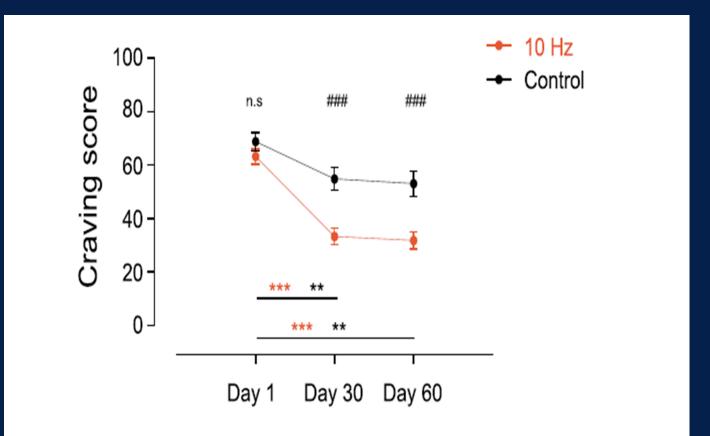

A, Withdrawal symptoms showed a significant difference for time ( $F_{3.32} = 198.18$ ; P < .001;  $p_2 = 0.81$ ) and for a time  $\times$  group interaction effect ( $F_{3.12} = 198.18$ ) and for a time  $\times$  group interaction effect ( $F_{3.12} = 198.18$ ) and for a time  $\times$  group interaction effect ( $F_{3.12} = 198.18$ ) and for a time  $\times$  group interaction effect ( $F_{3.12} = 198.18$ ) and for a time  $\times$  group interaction effect ( $F_{3.12} = 198.18$ ) and for a time  $\times$  group interaction effect ( $F_{3.12} = 198.18$ ) and for a time  $\times$  group interaction effect ( $F_{3.12} = 198.18$ ) and for a time  $\times$  group interaction effect ( $F_{3.12} = 198.18$ ) and  $F_{3.12} = 198.18$  and  $F_{3.12}$ P < .001;  $n_0 2 = 0.31$ ). Post hoc t tests (with Bonferroni correction for multiple comparisons) showed that withdrawal symptoms were significantly reduced for both thereal rTMSgroup ( $t_{23} = 13.21$ ; P < .001) and the shamrTMSgroup ( $t_{21} = 9.53$ , P < .001). B, Cue-induced craving showed a significant difference for time  $(F_{3,132} = 50.52; P < .001; \eta_P 2 = 0.53)$  and for a time  $\times$  group interaction effect  $(F_{3,132} = 22.93; P < .001; \eta_P 2 = 0.34)$ . Post hoc t tests (with Bonferroni correction for

# Repetitive transcranial magnetic stimulation treatment for female methamphetamine use disorder

Liu et al. 2019

90 MUD women

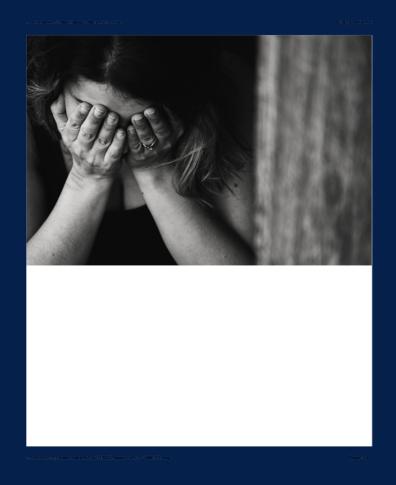
Treatment as usual (TAU) vs TAU plus rTMS


10 Hz DLPFC

#20 treatments over 4 weeks

Primary outcome: Craving

Measured pre, end of treatment, 60 days post






**Fig. 3.** The effect of rTMS in 10 Hz and control group. Inter group difference (# for p < .05, ## for p < .01 and ### for p < .001), and intra group difference (\* for p < .05, \*\* for p < .01 and \*\*\* for p < .001) were showed. There were significant differences between 10 Hz group and control group at day 30/60 after the treatment (p < .001). The effect of time was also significant

### TMS in Depression - Approved in 2008

- **\***Still questions:
- \*? Where to stimulate
- ? Accelerated treatment multiple treatments in 1 day, more rapid response
- ? Brain state at time of procedure
- Refining frequencies and patterns –Theta burst
- \* ? Durability, maintenance





# All good science leads to more questions: Currently approximately 220 TMS in SUD articles since 2000



- \* Dose: 20 or more sessions in depression
- # Frequency: 10 Hz most commonly used
- \* Target: DLPFC
- Durability
- # Impact on use (not only craving)
- ?Maintenance treatments
- \* Adjunctive therapies



# CTN 108: rTMS in Stimulant Use Disorder K Brady/M Trivedi Co-Pl

- **#**4 Site Trial
- \*N=120, methamphetamine or cocaine use disorder
- \*Daily digital monitoring of craving, use, mood/stress, sleep
- CBT digital modules available
- Primary Outcome: Feasibility of 30 sessions of rTMS (v. Sham)
- Secondary: Efficacy of up to 30 sessions of rTMS (v. Sham)
  - \* Outcome: Percent negative of the last UDS per treatment week (7-day)





### Clinical Trial of rTMS in Stimulant Use Disorder: TMS Parameters

- \*30 sessions over 6-8 week period
- sessions offered daily, but allow for flexible delivery schedule; may have 2 sessions in 1 day, must have at least 4 sessions per week
- Coil placed over DLPFC using EEG coordinates, determine motor threshold weekly (more frequent if participant actively using)

- \*Exploring EEG as biomarker for treatment efficacy
- Cue-reactivity session immediately before each TMS/sham session





#### **ONWARD AND UPWARD**

- Very promising therapy
- \*MUCH progress made in last 20 years

- **\***Need:
- \* Sham controlled, adequate sample size
- Dose-comparison studies
- Durability studies
- Ancillary/concommitant treatment





### References

- Hanlon CA, Dowdle LT, Henderson JS. Modulating Neural Circuits with Transcranial Magnetic Stimulation: Implications for Addiction Treatment Development. *Pharmacol Rev* 2018; **70**(3): 661-83.
- 2. Bolloni C, Panella R, Pedetti M, et al. Bilateral Transcranial Magnetic Stimulation of the Prefrontal Cortex Reduces Cocaine Intake: A Pilot Study. *Front Psychiatry* 2016; **7**: 133.
- 3. Liu T, Li Y, Shen Y, Liu X, Yuan TF. Gender does not matter: Add-on repetitive transcranial magnetic stimulation treatment for female methamphetamine dependents. *Prog Neuropsychopharmacol Biol Psychiatry* 2019; **92**: 70-5.
- 4. Liang Y, Wang L, Yuan TF. Targeting Withdrawal Symptoms in Men Addicted to Methamphetamine With Transcranial Magnetic Stimulation: A Randomized Clinical Trial. *JAMA Psychiatry* 2018; **75**(11): 1199-201.

