

Al-Driven Drug Repurposing for cocaine/ methamphetamine use disorder

Rong Xu, PhD

ASAM 55th Annual Conference April 4-7,2024, Dallas TX

Disclosure Information (Required)

Al-Driven Drug Repurposing for cocaine/ methamphetamine use disorder

April 6,2024, **ASAM 55th Annual Conference**

Rong Xu, PhD

No Disclosures

Learning Objectives (Suggested)

To demonstrate the potential of advanced AI technologies in drug repurposing to treat stimulant use disorders

Knowledge-driven Al-Human-Animal Reinforcement Learning

Knowledge-driven Al-Human-Animal Reinforcement Learning

The majority of biomedical knowledge is buried in free-text documents ("wisdom of the crowd")

Wiring of the Al "brain"

- Context-sensitive network, knowledge graph
- Explainable, transparent

CUD "is a comorbidity of" opioid use disorder, depression "is a risk factor for " CUD, CUD "is a risk factor for" depression, BDNF "is associated with" CUD, ketamine "targets" BDNF, ketamine "treats" depression, ketamine "causes" hypertension,

Drug Repurposing for cocaine use disorder (CUD): integration of AI, human intelligence, clinical corroboration, and mechanism of action analysis

1. Al-based Prediction

2. Expert review

- 3. Clinical evaluation
- 4. Mechanisms of action analysis

Ketamine

Step 1: Al-based drug repurposing for CUD

Input: a list of CUD-associated genes.

Output: a list of prioritized candidate drugs

Algorithm: KG-Predict

KG-Predict: knowledge graph-based prediction

Phase 1: Flow chart of knowledge graph construction

- (a) Extracted raw interactions from biomedical databases and text-mined knowledge base
- (b) Mapped entities into standard identifiers and merged raw interactions into a knowledge graph

Phase 2: From knowledge graph to entity/relation embedding to prediction, i.e. Drug

Step 2: Expert Panel Review of top candidates

The CTN-0114 advisory committee members

- * Kathleen Brady, MD, PhD
- * Todd Korthuis, MD, MPH
- * Sean Luo, PhD
- # Edward Nunes, MD
- # John Rotrosen, MD
- * Andrew Saxon, MD
- * Steven Shoptaw, PhD.

Expert Panel Review

Should each of the **top 35** drug candidates (out of a ranked list of **1,430** drugs) be included in the EHR analysis taking into account:

- Existing pre-clinical and clinical trials evidence
- Likely challenges with clinical utilization
- Potential to address co-occurring substance use and/or phenotypes which patients frequently report as being prominent barriers to their recovery
- On-going (or soon to start investigations)

Drug	Likely Poor Adherence? No*	Likely helpful for co- occurring substance use? Yes*	Likely helpful for phenotypes that are barriers to recovery? Yes*	EHR analysis? Yes*
Ketamine	7 (100%)	7 (100%)	6 (85.7%)	7 (100%)

2

Step 3: EHR-based clinical evaluation: cohort selection

Study population #1: patients with CUD + anesthesia

TriNetX Research Network: 90 million patients

0.02%

Study population of patients with CUD and anesthesia (n = 17,740)

- Diagnosis of CUD
 - Had anesthesia
- No CUD remission prior to anesthetic exposure

21.8%

78.2%

Ketamine Cohort (n = 3,872)

Anesthetic Cohort (n = 13,868)

Study population #2: patients with CUD + major depression

TriNetX Research Network: 90 million patients

0.08%

Study population of patients with CUD and depression (n = 69,639)

- Diagnosis of CUD
- Diagnosis of major depression
- No CUD remission prior to anti-depressant exposure

5.7%

94.3%

Ketamine Cohort (n = 3,959)

Anti-depressant Cohort (n = 65,680)

Comparing hazard rate of CUD remission within 1-year following ketamine vs. anesthetic prescription between matched cohorts

Propensity-score matching variables:

- Demographics (age, gender, race, and ethnicity)
- Socioeconomic factors (education, employment, occupational exposure, social and psychosocial environment, and housing)
- Pre-existing medical conditions (mental and behavioral disorders, mood disorder, anxiety, schizophrenia, hypertension, heart disease, cerebrovascular disease, and kidney failure)

Ketamine was associated with improved CUD remission compared with other anesthetic or anti-depressants

Ketamine is associated with greater remission from CUD in patients prescribed ketamine as an anesthetic (HR=1.98, Cl=1.42-2.78)

	CUD Remission in	CUD Remission in		
Matched Patients	Ketamine Group	Anesthetic Group		Hazard Ratio
All				
N = 3,871	2.58% (100)	1.32% (51)	├	1.98 (1.42, 2.78)
Gender				
Male (N = 2,453)	2.49% (61)	1.10% (27)	├──	2.32 (1.47, 3.65)
Female (N = 1,415)	2.76% (39)	1.20% (17)	-	2.35 (1.33, 4.16)
Race				
Caucasian (N = 2,287)	2.23% (51)	1.31% (30)	—	1.71 (1.09, 2.68)
African American (N = 1,231)	3.25% (40)	1.63% (20)	├──	2.12 (1.24, 3.63)
			1 2 3 4	5
			Hazard Ratio	

Ketamine is associated with greater remission from CUD in patients prescribed ketamine as an antidepressant (HR=4.39, CI=2.89-6.68)

	CUD Remission in	CUD Remission in		
Matched patients	Ketamine Group	Antidepressant Group		Hazard Ratio
All				
N = 3,955	2.93% (116)	0.68% (27)	├	4.39 (2.89, 6.68)
Gender				
Male (N = 2,228)	2.92% (65)	0.49% (11)	─	4.78 (3.21, 7.11)
Female (N = 1,726)	2.96% (51)	0.58% (10)	⊢	6.01 (3.76, 9.58)
Race				
Caucasian (N = 2,382)	2.73% (65)	0.51% (12)	├	4.91 (3.06, 7.87)
African American (N = 1,021)	3.63% (37)	0.98% (10)		5.73 (3.39, 9.68)
			1 2 3 4 5 6 7 8 9 10 Hazard Ratio	

Step 4: Mechanisms of action analysis of ketamine in the context of CUD

Ketamine targets CUD-associated genes

Drug	Total Target Genes	Target CUD Genes	CUD Genes
Ketamine	154	1()	BDNF, CNR1, DRD2, GABRA2, GABRB3, GAD1, OPRK1, OPRM1, SLC6A3, SLC6A4

* Ketamine targets CUD-related pathways

	Pathways							
1	Neuroactive ligand-receptor interaction	2	Alcoholism					
3	cAMP signaling pathway	4	Cocaine addiction					
5	Dopaminergic synapse	6	Amphetamine addiction					
7	GABAergic synapse	8	Morphine addiction					
9	Serotonergic synapse	10	Nicotine addiction					
11	Retrograde endocannabinoid signaling	12	Long-term depression					

Does the Al system work for other StUDs?

Drug Repurposing for methamphetamine use disorder (MethUD)

Results: Ketamine is associated with higher rate of MethUD remission compared with other anesthetic or anti-depressants

* Ketamine is associated with greater remission from MethUD in patients prescribed ketamine as an anesthetic (HR=1.59, Cl=1.17-2.18)

	Remission Ratio	Remission Ratio					
Drug	in Exposure Cohort	in Control Cohort					Hazard Ratio
Ketamine vs Other anesthetics	5.56% (104/1,872)	3.45% (65/1,886)	-	-			1.59 (1.17, 2.18)
			1	1.5 Hazard	2 Ratio	2.5	

* Ketamine is associated with greater remission from MethUD in patients prescribed ketamine as an antidepressant (HR=1.53, Cl=1.17-2.01)

	Remission Ratio	Remission Ratio					
Drug	in Exposure Cohort	in Control Cohort					Hazard Ratio
Ketamine vs Antidepressants	5.76% (129/2,240)	3.82% (86/2,253)	-	-			1.53 (1.17, 2.01)
			1	1.5 Hazaro	2 I Ratio	2.5	

Mechanisms of action analysis of ketamine in the context of MethUD

***** Ketamine targets MethUD-associated genes

Drug	Total Target Genes	Target MethUD Genes	MethUD Genes
Ketamine	154	12	NPY1R, HTR3A, GRM2, BDNF, ACHE, OPRM1, SLC6A4, GABRG2, SLC6A3, ADORA2A, DRD2, FOS

* Ketamine targets MethUD-related pathways

	Pathways						
1	Cocaine addiction	2	Morphine addiction				
3	Neuroactive ligand-receptor interaction	4	Amphetamine addiction				
5	Dopaminergic synapse	6	cAMP signaling pathway				
7	Gap junction	8	Serotonergic synapse				
9	Neurotrophin signaling pathway	10	Fluid shear stress and atherosclerosis				
11	Relaxin signaling pathway	12	Alcoholism				
13	MAPK signaling pathway	14	Chemical carcinogenesis - receptor activation				
15	Chemical carcinogenesis - reactive oxygen species						

Summary, limitations and future directions

Summary:

- This study demonstrates the potential of knowledge-driven AI in drug discovery for substance use disorders including StUD
- Findings suggest the potential of ketamine for treating CUD/MethUD

Limitations:

- Al-prediction: Incomplete, noisy, evolving knowledge
- Expert evaluation: time-consuming
- Cohort studies: confounders and biases
- Mechanism of action analysis: in-silico

Future works:

- Other substance use disorders
- Polysubstance use disorders
- Substance use disorders with comorbidities.

Gao Z, Winhusen TJ*, Gorenflo M, Ghitza UE, Davis PB, Kaelber DC, Xu R*. Repurposing ketamine to treat cocaine use disorder: Integration of artificial intelligence-based prediction, expert evaluation, clinical corroboration, and mechanism of action analyses. Addiction. 2023 Feb 15. doi: 10.1111/add.16168.

Acknowledgement

- John Winhusen, PhD (CTN-0114 Co-LI, PI of CTN Ohio Valley Node, University of Cincinnati,)
- ZhenXiang Gao, PhD, Maria Gorenflo, Pamela Davis, MD, PhD, David Kaelber, MD, PhD
- Udi Ghitza, PhD, was substantially involved in CTN-0114, consistent with his role as Scientific Officer.
- CTN-0114 Advisory Committee:
 - * Kathleen Brady, MD, PhD
 - * Todd Korthuis, MD, MPH
 - Sean Luo, PhD
 - Edward Nunes, MD
 - John Rotrosen, MD
 - Andrew Saxon, MD
 - Steven Shoptaw, PhD
- National Institute on Drug Abuse (UG1DA013732, CTN-0114)
- * The Clinical and Translational Science Collaborative (CTSC) of Cleveland (UL1TR002548).

QUESTIONS?

rxx@case.edu

